If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+42x-99=0
a = 3; b = 42; c = -99;
Δ = b2-4ac
Δ = 422-4·3·(-99)
Δ = 2952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2952}=\sqrt{36*82}=\sqrt{36}*\sqrt{82}=6\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{82}}{2*3}=\frac{-42-6\sqrt{82}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{82}}{2*3}=\frac{-42+6\sqrt{82}}{6} $
| r/3-4=;12 | | 4(3x+5)=2(x+10) | | (x(15+3))/3=3 | | 8x(40+7)=)(8x◼️)+(8x7) | | x3(2x-6)=0 | | (6x+3)^2=2−x | | |6x+3|=2−x | | |6x+3|=2−x. | | 2x^-4x-1=0 | | 2(y-3y=4y+6 | | 4^-5x-1=0 | | 6x2+6=-10 | | 7/2+p=3 | | 5x²-6x=2x-5 | | 6+4m=2 | | x+9=4x-45 | | x-9=4x-45 | | -2(x+7)+3=1 | | 5x^2-17x+72.25=0 | | 5x^{2}-17x+72.25=0 | | 6c+4=-2 | | P=(2a-1)(4a-7) | | x+10000+2x+x=30000 | | 3(3x-5)=9(x-2) | | 1/2x-50=100 | | 20=10(n+4) | | 50-1/2x=100 | | 3n/2-n+3/3=8-n+2/4 | | 2*x*3=27 | | 5(x+2)=2(x+10) | | A^-+b^2=40 | | 11x+100=x+100 |